Desa Bindu. Kec Peninjauan.Oku Induk.Sumatra Selatan

Translate

BOILER

Boiler adalah sebuah bejana tertutup yang berfungsi untuk mengubah wujud suatu fluida dari cair menjadi gas. Perubahan wujud tersebut terjadi karena penambahan kalor. Kalor yang ditambahkan dapat diperoleh dengan cara pembakaran bahan bakar fosil maupun non fosil, reaksi inti atom, ataupun merupakan gas buang dari sisa ekspansi turbin gas.
Sampai dengan saat ini secara umum dikenal dua macam jenis boiler yaitu Fire Tube Boiler (Boiler Tabung Api) dan Water Tube Boiler (Boiler Tabung Air). Water tube boiler mempunyai efisiensi yang lebih tinggi daripada fire tube boiler, khususnya yang membutuhkan panas tinggi atau tekanan tinggi, oleh karena itu boiler jenis ini banyak digunakan oleh industri yang dalam prosesnya membutuhkan tekanan tinggi.
JENIS-JENIS BOILER
Ada berbagai macam jenis boiler: Berdasarkan tempat fluida mengalir : Fire tube boiler, Water tube boiler, Berdasarkan proses pembakarannya: Fluidized bed combustion boiler, Atmospheric fluidized bed combustion boiler, Pressurized fluidized bed combustion boiler, Circulating fluidized bed combustion boiler, Stoker fired boiler, Pulverized fuel boiler, Boiler pemanas limbah (Waste heat boiler), Berdasarkan tekanan kerja: a. Low pressure (2-16 Kg/cm2), Medium pressure (17-30 Kg/cm2), High pressure (31-140 Kg/cm2), Super high pressure (141-225 Kg/cm2), Super critical pressure (Up to 226 Kg/cm2).
Fire Tube Boiler
Pada fire tube boiler, gas panas melewati pipa-pipa dan air umpan boiler ada didalam shell untuk dirubah menjadi steam. Fire tube boilers biasanya digunakan untuk kapasitas steam yang relative kecil dengan tekanan steam rendah sampai sedang. Sebagai pedoman, fire tube boilers kompetitif untuk kecepatan steam sampai 12.000 kg/jam dengan tekanan sampai 18 kg/cm2. Fire tube boilers dapat menggunakan bahan bakar minyak bakar, gas atau bahan bakar padat dalam operasinya. Untuk alasan ekonomis, sebagian besar fire tube boilers dikonstruksi sebagai “paket” boiler (dirakit oleh pabrik) untuk semua bahan bakar.
Water Tube Boiler
Pada water tube boiler, air umpan boiler mengalir melalui pipa-pipa masuk kedalam drum. Air yang tersirkulasi dipanaskan oleh gas pembakar membentuk steam pada daerah uap dalam drum. Boiler ini dipilih jika kebutuhan steam dan tekanan steam sangat tinggi seperti pada kasus boiler untuk pembangkit tenaga. Water tube boiler yang sangat modern dirancang dengan kapasitas steam antara 4.500 – 12.000 kg/jam, dengan tekanan sangat tinggi. Banyak water tube boilers yang dikonstruksi secara paket jika digunakan bahan bakar minyak bakar dan gas. Untuk water tube yang menggunakan bahan bakar padat, tidak umum dirancang secara paket.
Karakteristik water tube boilers sebagai berikut:
  1. Forced, induced dan balanced draft membantu untuk meningkatkan efisiensi pembakaran
  2. Kurang toleran terhadap kualitas air yang dihasilkan dari plant pengolahan air.
  3. Memungkinkan untuk tingkat efisiensi panas yang lebih tinggi.
Boiler Pembakaran dengan Fluidized Bed (FBC)
Pembakaran dengan fluidized bed (FBC) muncul sebagai alternatif yang memungkinkan dan memiliki kelebihan yang cukup berarti dibanding sistim pembakaran yang konvensional dan memberikan banyak keuntungan rancangan boiler yang kompak, fleksibel terhadap bahan bakar, efisiensi pembakaran yang tinggi dan berkurangnya emisi polutan yang merugikan seperti SOx dan NOx. Bahan bakar yang dapat dibakar dalam boiler ini adalah batubara, barang tolakan dari tempat pencucian pakaian, sekam padi, bagas & limbah pertanian lainnya. Boiler fluidized bed memiliki kisaran kapasitas yang luas yaitu antara 0.5 T/jam sampai lebih dari 100 T/jam.
Bila udara atau gas yang terdistribusi secara merata dilewatkan keatas melalui bed partikel padat seperti pasir yang disangga oleh saringan halus, partikel tidak akan terganggu pada kecepatan yang rendah. Begitu kecepatan udaranya berangsur-angsur naik, terbentuklah suatu keadaan dimana partikel tersuspensi dalam aliran udara – bed tersebut disebut “terfluidisasikan”. Dengan kenaikan kecepatan udara selanjutnya, terjadi pembentuka gelembung, turbulensi yang kuat, pencampuran cepat dan pembentukan permukaan bed yang rapat. Bed partikel padat menampilkan sifat cairan mendidih dan terlihat seperti fluida “bed gelembung fluida/ bubbling fluidized bed”.
Jika partikel pasir dalam keadaan terfluidisasikan dipanaskan hingga ke suhu nyala batubara, dan batubara diinjeksikan secara terus menerus ke bed, batubara akan terbakar dengan cepat dan bed mencapai suhu yang seragam. Pembakaran dengan fluidized bed (FBC) berlangsung pada suhu sekitar 840OC hingga 950OC. Karena suhu ini jauh berada dibawah suhu fusi abu, maka pelelehan abu dan permasalahan yang terkait didalamnya dapat dihindari. Suhu pembakaran yang lebih rendah tercapai disebabkan tingginya koefisien perpindahan panas sebagai akibat pencampuran cepat dalam fluidized bed dan ekstraksi panas yang efektif dari bed melalui perpindahan panas pada pipa dan dinding bed. Kecepatan gas dicapai diantara kecepatan fluidisasi minimum dan kecepatan masuk partikel. Hal ini menjamin operasi bed yang stabil dan menghindari terbawanya partikel dalam jalur gas.
DASAR TEORI BOILER
Boiling
Proses pemanasan air untuk mendapatkan steam merupakan proses yang sangat umum dilakukan oleh manusia. Secara termodinamika, cukup dengan menaikkan suhu air tersebut hingga mencapai titik yang diinginkan, hal ini dibutuhkan energy untuk menaikkan suhu atau merubah fase dari fase liquid menjadi fase gas. Contoh yang sederhana mengenai ini adalah alat kettle boiler.
Faktor teknis dan ekonomi yang sangat diperhatikan untuk menghasilkan steam dengan tekanan yang diinginkan adalah seberapa kecil energi yang dibutuhkan untuk mendapatkan steam yang sesuai.
Ada beberapa hala yang perlu diketahui mengenai boiler
Pressure (Tekanan)
Tekanan merupakan faktor penting dalam proses boiler. Tekanan proses yang diinginkan harus dijaga untuk menjamin kebutuhan steam sesuai tekanan yang dibutuhkan.
Temperature (Suhu)
Temperatur adalah panas kerja dalam boiler. Temperatur ini berbanding lurus dengan tekanan yang dihasilkan. Temperatur dan tekanan ini juga yang mencerminkan steam yang dihasilkan. Secara umum ada dua jenis steam yang dihasilkan:
Saturated steam
Temperature yang dihasilkan segaris dengan tekanan
Superheated steam
Temperatur yang dihasilkan sesuai dengan design yang direncanakan pada boiler.
Kapasitas
Kapasitas adalah kemampuan boiler untuk menghasilkan uap dalam satuan berat per waktu. Untuk mendapatkan kapasitas boiler, harus mengetahui effisiensi dari boiler dan jumlah bahan bakar yang digunakan.
Kalor yang diberikan bahan bakar x effisiensi = Kalor yang diterima fluida untuk menjadi uap
M DH = h (W) HV
Keterangan:
M = Kapasitas, Kg/Jam
DH = Perbedaan entalphy keluar dan masuk, Kcal/Kg
h = Effisiensi, %
W = Berat Bahan Bakar, Kg/Jam
HV = Heating Value, Kcal/Kg
untuk fiber : 2340 Kcal/kg
untuk shell : 3480 Kcal/kg
Efisiensi
Effisiensi merupakan suatu ukuran efektifitas panas, suatu ukuran persentase berapa banyak steam yang dihasilkan dalam setiap jumlah bahan bakar yang terbakar.
Neraca Panas
Proses dalam boiler tidak lepas dari penyusunan neraca panas. Proses pembakaran dalam boiler dapat digambarkan dalam gambar neraca energi. Energi masuk dari proses pembakaran bahan bakar diubah menjadi energi yang bisa digunakan untuk untuk berbagai kebutuhan. Dalam proses ini pasti ada kehilangan energi.
Neraca panas merupakan keseimbangan energi masuk dan yang keluar. Berikut ilustrasi proses termodinamika.
Sebagai contoh, berikut gambaran kehilangan energi yang mungkin dalam proses boiler dengan menggunakan bahan bakar batu bara.
Kehilangan energi dalam proses bisa dikategorikan kehilangan yang bisa dihindari dan yang tidak dapat dihindari. Pengkajian energi harus mengurangi kehilangan yang dapat dihindari, dengan meningkatkan efisiensi energi. Kehilangan dapat diminimalisasi:
-          Kehilangan panas di gas cerobong.
Udara berlebih diturunkan hingga batas udara minimum dibutuhkan.
Suhu gas cerobong dioptimalkan dengan pemeliharaan yang baik, teknologi boiler yang baik, dan lain-lain.
-          Kehilangan karena bahan bakar yang tidak terbakar dalam ruang pembakaran, mengoptimalkan operasi dan pemeliharaan.
-          Kehilangan waktu blowdown, pengolahan air umpan yang baik dan daur ulang kondensat.
-          Kehilangan kondensat.
-          Kehilangan konveksi dan radiasi ke lingkungan, dikurangi dengan mengisolasi boiler dengan baik.


Q in = Q use + Q loss
Blowdown Boiler
Jika air dididihkan dan dihasilkan steam, padatan terlarut yang terdapat dalam air akan tinggal di boiler. Jika banyak padatan terdapat dalam air umpan, padatan tersebut akan terpekatkan dan akhirnya akan mencapai suatu tingkat dimana kelarutannya dalam air akan terlampaui dan akan mengendap dari larutan. Diatas tingkat konsenrasi tertentu, padatan tersebut mendorong terbentuknya busa dan menyebabkan terbawanya air ke steam. Endapan juga mengakibatkan terbentunya kerak di bagian dalam boiler, mengakibatan pemanasan setempat menjadi berlebih dan akhirnya menyebabkan kegagalan pada pipa boiler. Oleh karena itu penting untuk mengendalikan tingkat konsentrasi padatan dalam suspensi dan yang terlarut dalam air yang dididihkan. Hal ini dicapai oleh proses yang disebut ‘blowing down’, dimana sejumlah tertentu volume air dikeluarkan dan secara otomatis diganti dengan air umpan – dengan demikian akan tercapai tingkat optimum total padatan terlarut (TDS) dalam air boiler dan membuang padatan yang sudah rata keluar dari larutan dan yang cenderung tinggal pada permukaan boiler. Blowdown penting untuk melindungi permukaan penukar panas pada boiler. Walau demikian, Blowdown dapat menjadi sumber kehilangan panas yang cukup berarti, jika dilakukan secara tidak benar.
Blowdown yang sewaktu-waktu/intermittent
Blowdown yang sewaktu-waktu dioperasikan secara manual menggunakan sebuah kran yang dipasang pada pipa pembuangan pada titik terendah shell boiler untuk mengurangi parameter (TDS atau konduktivitas, pH, konsentasi Silica dan Fosfat) dalam batasan yang sudah ditentukan sehingga tidak berpengaruh buruk terhadap kualitas steam. Jenis blowdown ini juga merupakan metode efektif untuk membuang padatan yang telah lepas dari larutan dan menempati pipa api dan permukaan dalam shell boiler. Pada blowdown yang sewaktu-waktu, jalur yang berdiameter besar dibuka untuk waktu sesaat, yang didasarkan pada aturan umum misalnya “sekali dalam satu shift untuk waktu 2 menit”. Blowdown yang sewaktu-waktu menyebabkan harus ditambahkannya air umpan ke dalam boiler dalam jumlah besar dan dalam waktu singkat, sehingga membutuhkan pompa air umpan yang lebih besar daripada jika digunakan blowdown kontinyu. Juga, tingkat TDS akan bervariasi, sehingga menyebabkan fluktuasi ketinggian air dalam boiler karena perubahan dalam ukuran gelembung steam dan distribusinya yang setara dengan perubahan dalam konsentrasi padatan. Juga, sejumlah besar energi panas hilang karena blowdown yang sewaktu-waktu.
Blowdown yang kontinyu
Terdapat pemasukan yang tetap dan konstan sejumlah kecil aliran air boiler kotor, dengan penggantian aliran masuk air umpan yang tetap dan konstan. Hal ini menjamin TDS yang konstan dan kemurnian steam pada beban steam tertentu. Kran blowdown hanya diatur satu kali untuk kondisi tertentu, dan tidak perlu lagi diatur setiap saat oleh operator. Walaupun sejumlah besar panas diambil dari boiler, tetapi ada peluang pemanfaatan kembali panas ini dengan mengembuskannya ke flash tank dan mengasilkan flash steam. Flash steam ini dapat digunakan untuk pemanasan awal air umpan boiler. Jenis blowdown ini umum digunakan pada boiler bertekanan tinggi. Residu blowdown yang meninggalkan flash vessel masih mengandung energi panas yang cukup dan dapat dimanfaatkan kembali dengan me masang sebuah penukar panas untuk memanaskan air make-up dingin. Sistim pemanfaatan kembali panas blowdown yang lengkap seperti yang digambarkan dibawah dapat memanfaatkan hingga 80% energi yang terkandung dalam blowdown, yang dapat diterapkan pada berbagai ukuran boiler steam dengan waktu
pengembalian modalnya bisa kembali hanya dalam beberapa bulan.
Keuntungan pengendalian blowdown
Pengendalian blowdown boiler yang baik dapat secara signifikan menurunkan biaya perlakuan dan operasional yang meliputi:
§ Biaya perlakuan awal lebih rendah
§ Konsumsi air make-up lebih sedikit
§ Waktu penghentian untuk perawatan menjadi berkurang
§ Umur pakai boiler meningkat
§ Pemakaian bahan kimia untuk pengolahan air umpan menjadi lebih rendah


Pengolahan Air Umpan Boiler
Memproduksi steam yang berkualitas tergantung pada pengolahan air yang benar untuk mengendalikan kemurnian steam, endapan dan korosi. Sebuah boiler merupakan bagian dari sistim boiler, yang menerima semua bahan pencemar dari sistim didepannya. Kinerja boiler, efisiensi, dan umur layanan merupakan hasil langsung dari pemilihan dan pengendalian air umpan yang digunakan dalam boiler.
Jika air umpan masuk ke boiler, kenaikan suhu dan tekanan menyebabkan komponen air memiliki sifat yang berbeda. Hampir semua komponen dalam air umpan dalam keadaan terlarut. Walau demik ian, dibawah kondisi panas dan tekanan hampir seluruh komponen terlarut keluar dari larutan sebagai padatan partikuat, kadang-kadang dalam bentuk Kristal dan pada waktu yang lain sebagai bentuk amorph. Jika kelarutan komponen spesifik dalam air terlewati, maka akan terjadi pembentukan kerak dan endapan. Air boiler harus cukup bebas dari pembentukan endapan padat supaya terjadi perpindahan panas yang cepat dan efisien dan harus tidak korosif terhadap logam boiler.
Pengendalian endapan
Endapan dalam boiler dapat diakibatkan dari kesadahan air umpan dan hasil korosi dari sistim kondensat dan air umpan. Kesadahan air umpan dapat terjadi karena kurangnya sistim pelunakan. Endapan dan korosi menyebabkan kehilangan efisiensi yang dapat menyebabkan kegagalan dalam pipa boiler dan ketidakmampuan memproduksi steam. Endapan bertindak sebagai isolator dan memperlambat perpindahan panas. Sejumlah besar endapan diseluruh boiler dapat mengurangi perpindahan panas yang secara signifikan dapat menurunkan efisiensi boiler. Berbagai jenis endapan akan mempengaruhi efisiensi boiler secara berbeda-beda, sehingga sangat penting untuk menganalisis karakteristik endapan. Efek pengisolasian terhadap endapan menyebabkan naiknya suhu logam boiler dan mungkin dapat menyebabkan kegagalan pipa karena pemanasan berlebih.
Kotoran yang mengakibatkan pengendapan
Bahan kimia yang paling penting dalam air yang mempengaruhi pembentukan endapan dalam boiler adalah garam kalsium dan magnesium yang dikenal dengan garam sadah. Kalsium dan magnesium bikarbonat larut dalam air membentuk larutan basa/alkali dan garam-garam tersebut dikenal dengan kesadahan alkali. Garam-garam tersebut terurai dengan pemanasan, melepaskan karbon dioksida dan membentuk lumpur lunak, yang kemudian mengendap. Hal ini disebut dengan kesadahan sementara – kesadahan yang dapat dibuang dengan pendidihan.
Kalsium dan magnesium sulfat, klorida dan nitrat, dll, jika dilarutkan dalam air secara kimiawi akan menjadi netral dan dikenal dengan kesadahan non-alkali. Bahan tersebut disebut bahan kimia sadah permanen dan membentuk kerak yang keras pada permukaan boiler yang sulit dihilangkan. Bahan kimia sadah non-alkali terlepas dari larutannya karena penurunan daya larut dengan meningkatnya suhu, dengan pemekatan karena penguapan yang berlangsung dalam boiler, atau dengan perubahan bahan kimia menjadi senyawa yang kurang larut.
Silika
Keberadaan silika dalam air boiler dapat meningkatkan pembentukan kerak silika yang keras. Silika dapat juga berinteraksi dengan garam kalsium dan magnesium, membentuk silikat kalsium dan magnesium dengan daya konduktivitas panas yang rendah. Silika dapat meningkatkan endapan pada sirip turbin, setelah terbawa dalam bentuk tetesan air dalam steam, atau dalam bentuk yang mudah menguap dalam steam pada tekanan tinggi. Dua jenis utama pengolahan air boiler adalah pengolahan air internal dan eksternal.
Share:

0 Comments:

Posting Komentar

NGOBROL ROBOT CERDAS AI

NGOBROL ROBOT  CERDAS AI
CLICK GAMBAR

COBA LIHAT :

BUKA DULU :

Entri yang Diunggulkan

TEKNOLOGI KLARIFIKASI MINYAK SAWIT

1.       KLARIFIKASI MINYAK U m u m Cairan yang keluar dari alat press terdiri dari campuran minyak, air dan padatan bukan minyak atau dis...